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M TDM Requirements

TAKE PICTURES. FURTHER.

Vertex Radius 7596 mm

Conic Constant -1.000

Part Diameter 1.87 m (full part)

Off Axis distance (vertex to part center) | 1321.524 mm (f/0.85 parent)

Radius of Curvature Tolerance +/- 2 mm

Knowledge of ROC 50 um HHHAK

Off Axis Distance Tolerance +/- 2mm

Knowledge of Off Axis Distance 100pm AR

Tolerance on Conic +/- 0.0001

Knowledge of Conic +/- 0.00001 Rk

Test set uncertainty (surface error) 6.45nm rms LSF Rk
(Flowdown from top-level requirements) | 3.50nm rms MSF FRIHE
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Typical Offner Null Design

TAKE PICTURES. FURTHER.

Paraxial Focus Plane \

20mm diameter
caustic

Wavefront fit ~0.003\ rms (~2nm)

f/1.5 parent mirror
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TAKE PICTURES. FURTHER.

Not So Typical

Vertex Radius

7596 mm

Conic Constant

-1.000

Part Diameter

1.87 m (full part)

Off Axis distance (vertex to part center) 1321.524 mm

(f/0.85 parent)

Wavefront fit ~0.030A rms (~19nm)
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M Now What?

TAKE PICTURES. FURTHER.

e Significant residual wavefront error in the design
o Need to back out from measurements with low uncertainty

« Manufacturing tolerances are inadequate to achieve required wavefront
knowledge

e 3element null could reduce wavefront error in design

« Analysis shows this is even less stable

e Now What?

o« Computer Generated Holograms to the rescue!
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M Use of CGH to calibrate the null lens

TAKE PICTURES. FURTHER.

« Use acomputer generated
hologram CGH to measure the
null lens

« The CGH uses diffraction to
reflect light, simulating a
perfect primary mirror.

e CGHerrors areonly ~0.015 A
rms, and can be measured and
removed from the data

—

—
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M Rationale behind CGH

TAKE PICTURES. FURTHER.

e Null corrector can provide good reference with ??? nm rms
surface

e Errors from the null lens will be smooth, low frequency. Due to
misalignment, refractive index variations, figure errors in the
spherical lens surfaces

e CGH uses axisymmetry for test of parent. CGH consists of a
pattern of concentric rings written in chrome onto a flat glass
substrate

e CGH has excellent accuracy, limited by

« Fabrication errors — laser writer uses interferometric feedback for control
o Surface flatness — well polished, careful support, easy to qualify

« Wavelength of light - stability of HeNe source, control of temperature
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M Limitations for CGH test

TAKE PICTURES. FURTHER.

e State of the art CGHs give accuracy to ~0.015A rms for f/1
tests. Almost there. To get better accuracy, we need to
measure errors from CGH and remove them from the
data.

e Sources of error for CGH:

o Substrate flatness:

make good flat, qualify with direct measurement

Rotate CGH to average out HF errors in surface
o Distortion of CGH pattern

Use accurate laser writer

Average out azimuthal errors by rotating CGH
Measure non-axisymmetric errors directly, correct for them
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M CGH fabrication errors
from circular laser writer

TAKE PICTURES. FURTHER.

Wavefront errors at position (r, ) depend on: AW (r.0) = —-mA Ar(r; 6’)
Ar: ring position error ( J ) - S
S: CGH line spacing at order m (I’)
Substrate is rotated using air bearing spindle 1 ‘ o
Spindle wobble causes spoke-like errors L, 05 k oo
This error is readily overcome L

g I -D.m
2 |
-1 a 1
1 ~ —

Radial position controlled using air bearing, o
measured with interferometer 0 0.01
Errors in radial coordinate causes ring-like errors .
Accuracy is ~0.05 pm rms= ~10 nm rms surface a0
Propose solution using Dual CGH |
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The Dual CGH

S—————

Spherical Prescription Segmented Hologram Aspheric Prescription

e Segment the CGH into quadrants, so the spherical and aspheric
prescriptions to be measured separately (ref Reichelt 2002).

e Both patterns are written at the same time, so any radial
coordinate error will cause the same error for both patterns
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TAKE PICTURES. FURTHER.

Transfer Knowledge from Sphere to Asphere

Wavefront Errors in Sphere

L

ine Spacing for Sphere

AW

A

vy

r

Line Spacing Errors in Asphere

S/A
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r
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Ar = AW*S/\

Line Spacing for Asphere

Line Spacing Errors in Sphere

AX

N\
\J/\V

S/A

AW = Ar*A/S

Wavefront Errors in Asphere

o
/AN
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M Taking Distortion Into Account

TAKE PICTURES. FURTHER.

Xx*m

1 I
\

T Image of Interferometer
CGH Objective

CGH with
Spherical Rx

An interferometer images a CGH with a spherical
prescription with no distortion
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TAKE PICTURES. FURTHER.

Taking Distortion into Account

Offner Null
Assembly
o L /M)(/ -
N
_ Vv
Image Interferometer \\V/ ~ T
Plane Objective CGH with
Aspheric Rx

D is the distortion mapping function that
is dependant on ray position on the CGH

e Large spherical aberration imparted by the Offner Null
distorts mapping function of CGH with aspheric
prescription
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M Correcting Distortion

TAKE PICTURES. FURTHER.

Wavefront Errors in Asphere

o
JAN

r Errors in Asphere

‘ U Distortion Corrected Wavefront

AW ‘\
Distortion for Asphere = \JQUQ'
r*D*m

D*m

e Distortion Correction does not effect amplitude of AW
e Distortion Correction only effects waveform mapping
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Create Useful 2 Dimensional Data

e Sweep datato make 2 dimensional back out data
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Technology development plan

1. Demonstrate concept using quadrant CGHs with
spherical surfaces.

2. Demonstrate ability to back errors out of a CGH null lens
test using a smaller, existing, well known null corrector

3. Fabricate full scale prototype to test software, control of
laser writing machine
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TAKE PICTURES. FURTHER.

Preliminary results

Spherel R =59mm
8.1 nmrms
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7.0 nmrms
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M Preliminary results

TAKE PICTURES. FURTHER.

Calculation of CGH error for separate guadrants

CGH errors here match to ~0.01 pm rms
Wavefront effects will match to <2 nm rms!
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